RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2014

SECOND YEAR

Mathematics for Economics (General)

Date : 27/05/2014 Time : 11 am – 2 pm

Paper : IV

Full Marks : 75

 $[7 \times 5]$

 $[3 \times 5]$

[5]

[5]

[5]

[5]

[1+4]

(Use separate answer books for each group)

<u>Group – A</u>

- 1. Answer any seven questions of the following :
 - a) Consider the linear transformation $T: IP_2(\mathbb{R}) \to IP_2(\mathbb{R})$ defined by, T(f(x)) = f'(x).(3+x) + 2f(x) compute the matrix representation $[T]_\beta$ where $\beta = \{1, x, x^2\}$.
 - b) Consider the linear transformation $T: IP_3(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by, $T(f(x)) = \begin{pmatrix} f'(0) & 1 \\ 0 & 2f(1) \end{pmatrix}$. Is T invertible, give reasons.
 - c) Let V and W be vector spaces and let $T: V \rightarrow W$ be linear and if $N(T) = \{\theta\}$ where θ is the null vector of V then what type of mapping T is ?
 - d) Let V and W be vector spaces over a field F. Then prove that A linear mapping $T: V \rightarrow W$ is invertible if and only if T is one to one and onto.
 - e) Show that similar matrices have the same eigen value.
 - f) Prove that a real symmetric matrix is negative definite if and only if all its eigen values are negative.
 - g) Reduce the quadratic form $5x^2 + y^2 + 10z^2 4yz 10zx$ to the normal form.
 - h) Let $T: P_2(\mathbb{R}) \to IP_2(\mathbb{R})$ be a linear operator defined by, $T(ax^2 + bx + c) = cx^2 + bx + a$.

Then compute whether the matrix $[T]_{\beta}$ where $\beta = \{1, x, \frac{x^2}{2}\}$ is diagonalizable?

- i) Let T is a linear operator on a vector space V. Show that the null space of T is an invariant subspace of V.
- j) Let V be the vector space of all continuous real valued functions defined on [0, 1]. Then prove that the following is a inner product on V. $\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$.
- k) Let V be the vector space of all continuous real valued functions defined on [0, 1]. Consider the two inner products on V defined by, $\langle f,g \rangle_1 \int_0^1 f(t)g(t)dt$ and $\langle f,g \rangle_2 \int_{-1}^1 f(t)g(t)dt$

Prove that the vectors $f(x) = x^2$, g(x) = x are orthogonal in the second inner product but not in the first.

- 2. Answer any three questions of the following :
 - a) Prove that the cube roots of unity form an abelian group w.r.t multiplication.
 - b) Let (G, \bullet) be a group and H, K are subgroups of (G, \bullet) then $H \cap K$ is a subgroup of (G, \bullet) .
 - c) Prove that, every subgroup of a cyclic group is cyclic.
 - d) The set $\{a+b\sqrt{2}:a,b\in q\}$ forms a commutative ring with unity under addition and multiplication. Prove that this set forms a field.
 - e) Define integral domain. Prove that a field is an integral domain.

<u>Group – B</u>

3.	Answer any three questions of the following :-		$[3 \times 7]$
	a)	Define a convex set. Prove that, the set of all feasible solutions of an L.P.P is a convex set	[2+5]
	b)	Solve the following L.P.P by graphical method	
		minimize $Z = 3x + 4y$	
		$5x + 4y \ge 20$	
		Subject to $\begin{array}{c} -x + y \le 3 \\ x \le 4 \end{array}$	[7]
			[/]
		$y \ge 3$ where $(x, y) \ge 0$	
	c)	Use charne's Big M method to solve the following L.P.P.	
		Maximize $Z = x_1 + 5x_2$	
		$3x_1 + 4x_2 \le 6$	
		Subject to $x_1 + 3x_2 \ge 3$	[7]
		and $x_1, x_2 \ge 0$	
	d)	Use duality and simplex method to find the optimal solution of the following L.P.P.	
		Maximize $Z = 3x_1 + 4x_2$	
		$x_1 + x_2 \le 10$	
		$2x_1 + 3x_2 \le 18$	
		Subject to $x_1 \le 8$	[7]
		$x_2 \leq 6$	
		and $x_1, x_2 \ge 0$	
	e)	State the fundamental theorem of Duality. Prove that the dual of the dual is the primal.	[2+5]
4.	An	swer any one question of the following :-	$[1 \times 4]$
	a)	Show that the feasible solution $(1, 0, 1, 6)$ of the system	
		$x_1 + x_2 + x_3 = 2$	
		$x_1 - x_2 + x_3 = 2$	
		$2x_1 + 3x_2 + 4x_3 - x_4 = 0$	
		is not basic	

is not basic.

b) Food X contains 5 units of vitamin A and 6 units of vitamin B per gram and costs 20 p/gm.
Food Y contains 8 units of vitamin A and 10 units of vitamin B per gram and costs 30 p/gm. The daily requirements of A and B are at least 80 and 100 units respectively.
Formulate the above as a linear programming problem to minimize the cost.

80衆Q